Non-Negotiables:

- All lessons must include opportunities for children to develop Fluency, Reasoning and Problem Solving skills.
- All lessons must offer Greater Depth opportunities for higher achievers
- Children must be taught to understand Mathematical structures through the use of models and images
- Children should be guided in their reasoning through the use of Stem Sentences and explicit use of accurate mathematical language by the teacher and children.
- The Units below MUST be taught in this order - Please discuss with your Maths Leader if you wish to change this for any reason.

Assessments

- Daily recording in Maths books inform instant interventions and adapt lessons to meet the needs of all learners
- Fluency Tests to be taken once every half term
- Children take x table test in June (Yr4)
- Testbase Assessment to be taken at the end of the Summer term
- NFER Assessments taken in Autumn, Spring and Summer term.

Other Points:

- Mental Oral Starters can be used to fulfil part of fluency activities but should also be used for an opportunity to consolidate and revisit previous learning from other units.
- Any weeks left at the end of each term should be used for closing the gap and giving children the opportunity to apply their learnt skills to a real life context for example, a shop, an estate agent, a car salesroom, a factory, planning a holiday etc.

Key Points

- Think about prior Year Group learning - look at previous year group curriculum statements and decide which need revisiting before starting the current year group content.
- Then break down the learning into small steps for the unit of work. White Rose can help with this but remember they are a guide. Also, small steps are not lessons, some might be part of 1 lesson and others multiple lessons on their own.

Problem Solving and Reasoning Questions Support

- I See Reasoning for reasoning questions
- White Rose units stated above for Problem Solving and Reasoning questions
- NRICH use the curriculum maps to current teaching (https://nrich.maths.org/teacher-primary) Greater Depth Questions Support
- NCETM Mastery and Greater Depth Models and Images Support and Ideas
- NCETM Spine Resources - https://www.ncetm.org.uk/resources/50640 - This can also be used to support subject knowledge \square White Rose Notebooks https://whiterosemaths.com/resources/primary-resources/

Key Points - Tenths and hundredths are to be taught alongside Place Value so children see them as part of the Base 10 System

- Constant difference methods for addition and subtraction should be taught alongside written methods with an emphasis on the most 'efficient' method.
- Think about prior Year Group learning - look at previous year group curriculum statements and decide which need revisiting before starting the current year group content.
 others multiple lessons on their own.
Bold text refers to upper year group.

Week 1	2	3	4	5
Division \& Multiplication				

Number: Multiplication and Division

Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objectives.
Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
Multiply two digit and three digit numbers by a one digit number using formal written layout.
Find the area of rectilinear shapes by counting squares (link to multiplication)

> Fractions and Decimals
> Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators.

Compare and order unit fractions, and fractions with the same denominators.
Compare numbers with the same number of decimal places up to two decimal places.
Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators. Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number.

Count up and down in tenths.
Count up and down in hundredths.

Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.

Find the effect of multiplying and dividing a one or two digit number by 10 or 100 , identifying the value of the digits in the answer as ones, tenths and hundredths.

Recognise and show, using diagrams, equivalent fractions with small denominators. Recognise and show, using diagrams, families of common equivalent fractions.

Add and subtract fractions with the same denominator within one whole. Add and subtract fractions with the same denominator.

Solve problems that involve all of the above.
Solve simple measure and money problems involving fractions and decimals to two decimal places
Recognise and write decimal equivalents of any number of tenths or hundredths. Recognise
and write decimal equivalents to $1 / 4,1 / 2,3 / 4$
Round decimals with one decimal place to the nearest whole number.
Possible Stem Sentences:
Throughout - Link the denominator to division. The fraction bar is dividing the whole into \qquad s, e.g. thirds. Key Vocabulary:
The denominator - The whole number of equal parts
The Numerator - The number of parts taken
A fraction is a part of a whole
A fraction is an equal part of a whole
$3 / 4$ is 3 of 4 equal parts "
As the denominator gets greater, the parts get smaller, so we need more parts to be equivalent." Equivalent means equal ($=$) to or the same as.
Key Point The bar model should be used to explicitly show fractions of amounts

Bold text refers to upper year group.

Years 3 \& 4 - Summer Term

Week 1	3 4 5	6 7 8	10	11 12
Length, Perimeter \& Area	Time	Shape	Volume \& Capacity (Yr3) Coordinates (Yr4)	Statistics
Measures - Length Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$). Measure the perimeter of simple 2D shapes. Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres Continue to measure using the appropriate tools and units, progressing to using a wider range of measures, including comparing and using mixed and simple equivalents of mixed units. Convert between different units of measure eg kilometre to metre.	Time Tell and write the time from an analogue clock, including using Roman numerals and 12-hour and 24hour clocks. Read, write \& convert time between analogue and digital 12 and 14 hour clocks. Estimate and read time with increasing accuracy to the nearest minute. Record and compare time in terms of seconds, minutes and hours. Convert between different units of measure eg hour to minute. Use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. Know the number of seconds in a minute and the number of days in each month, year and leap year. Compare durations of events (for example to calculate the time taken by particular events or tasks). Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days Top Tip: Try teaching the hours and minutes separately initially and then combine	Geometry Recognise angles as a property of shape or a description of a turn. Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. Identify acute and obtuse angles and compare and order angles up to two right angles by size. Identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Identify lines of symmetry in 2D shapes presented in different orientations. Complete a simple symmetric figure with respect to a specific line of symmetry. Draw 2-D shapes Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. Make 3-D shapes using modelling materials. Recognise 3-D shapes in different orientations and describe them	Measures: volume and capacity (Y3) Measure, compare, add and subtract: mass (kg/g); volume/capacity (1/ml). Co-ordinates (Y4) Describe positions on a 2D grid as coordinates in the first quadrant. Describe movements between positions as translations of a given unit to the left/ right and up/ down. Plot specified points and draw sides to complete a given polygon.	Statistics Interpret and present data using bar charts, pictograms and tables. Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. Solve one-step and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in scaled bar charts and pictograms and tables. Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
Possible Stem Sentences: $1,000 \mathrm{~g}=1 \mathrm{~kg}$ $1,000 \mathrm{ml}=1 \mathrm{~L}$ "Perimeter is the total distance around the outside." Regular shapes have all sides and angles the same "The area is the total surface space on the inside."	Possible Stem Sentences: The hour hand is the shorter hand The minute hand is the longer hand The numbers on a clock go up in 5 minutes The 6 is half way around If the minute hand is before the 6 it is past the hour If the minute hand is after the 6 it is to the next hour	Possible Stem Sentences: "Parallel lines never meet and always stay the same distance apart." "Regular shapes have equal sides and equal angles."	Possible Stem Sentences: " X comes before Y."	Top Tip One lesson modelling drawing bar charts together before they try independently.

Bold text refers to upper year group.

